Delta Lake Operations Guide | CONFIDENTIAL

DELTA LAKE
OPERATIONS GUIDE

ACID Transactions • Time Travel • MERGE • OPTIMIZE • VACUUM

Version 1.0 | January 2026

Table of Contents

1. Delta Lake Fundamentals
Delta Lake is the storage layer for Microsoft Fabric Lakehouse, providing ACID transactions, scalable metadata handling, and time travel capabilities on top of data lake storage.
1.1 Key Features
1. ACID Transactions: Serializable isolation for concurrent reads/writes
1. Time Travel: Query historical versions of data
1. Schema Evolution: Add columns without rewriting data
1. Schema Enforcement: Prevent bad data from entering tables
1. Audit History: Track all changes with operation metadata
1. Unified Batch/Streaming: Same table for both patterns
1.2 Delta Table Structure
A Delta table consists of data files and a transaction log:
my_table/
 _delta_log/ # Transaction log
 00000000000000000000.json
 00000000000000000001.json
 ...
 00000000000000000010.checkpoint.parquet
 part-00000-xxx.parquet # Data files
 part-00001-xxx.parquet
 ...
Transaction Log
1. JSON files recording each transaction
1. Checkpoints every 10 commits for performance
1. Enables time travel and ACID guarantees
1. Automatically managed by Delta Lake
1.3 Creating Delta Tables
From DataFrame
Create new Delta table
df.write.format('delta').save('Tables/my_table')

Create as managed table
df.write.format('delta').saveAsTable('my_table')
Using SQL
CREATE TABLE my_table (
 id BIGINT,
 name STRING,
 amount DECIMAL(18,2)
) USING DELTA
With Partitioning
CREATE TABLE my_table (
 id BIGINT,
 name STRING,
 report_date DATE
) USING DELTA
PARTITIONED BY (report_date)

2. ACID Operations
Delta Lake provides full ACID transaction support, ensuring data integrity even with concurrent operations.
2.1 INSERT
Append Data
PySpark append
df.write.format('delta').mode('append').save(path)

-- SQL append
INSERT INTO my_table VALUES (1, 'John', 100.00)
Insert from Select
INSERT INTO target_table
SELECT * FROM source_table
WHERE condition = true
2.2 UPDATE
PySpark update
from delta.tables import DeltaTable

dt = DeltaTable.forPath(spark, 'Tables/my_table')
dt.update(
 condition='status = "PENDING"',
 set={'status': '"PROCESSED"', 'processed_date': 'current_date()'}
)

-- SQL update
UPDATE my_table
SET status = 'PROCESSED', processed_date = current_date()
WHERE status = 'PENDING'
2.3 DELETE
PySpark delete
dt = DeltaTable.forPath(spark, 'Tables/my_table')
dt.delete('expired_date < current_date()')

-- SQL delete
DELETE FROM my_table
WHERE expired_date < current_date()
2.4 MERGE (Upsert)
MERGE is the most powerful Delta operation, enabling insert/update/delete in a single transaction:
MERGE INTO target_table t
USING source_data s
ON t.id = s.id
WHEN MATCHED AND s.deleted = true THEN DELETE
WHEN MATCHED THEN UPDATE SET *
WHEN NOT MATCHED THEN INSERT *
PySpark MERGE
from delta.tables import DeltaTable

target = DeltaTable.forPath(spark, target_path)

target.alias('t').merge(
 source.alias('s'),
 't.id = s.id'
).whenMatchedUpdateAll()
 .whenNotMatchedInsertAll()
 .execute()
MERGE Best Practices
1. Filter source to only changed records when possible
1. Use specific columns in SET instead of SET * for large tables
1. Add condition to whenMatched for update optimization
1. Consider partitioning source by merge key

3. Time Travel
Time travel enables querying historical versions of Delta tables, supporting audit, debugging, and rollback scenarios.
3.1 Querying History
View Table History
DESCRIBE HISTORY my_table

Returns: version, timestamp, operation, user, parameters
Shows all commits with metadata
Query by Version
-- SQL
SELECT * FROM my_table VERSION AS OF 5

PySpark
spark.read.format('delta').option('versionAsOf', 5).load(path)
Query by Timestamp
-- SQL
SELECT * FROM my_table TIMESTAMP AS OF '2024-01-15 10:30:00'

PySpark
spark.read.format('delta').option('timestampAsOf', '2024-01-15').load(path)
3.2 Restore Table
Restore a table to a previous version:
-- Restore to version 5
RESTORE TABLE my_table TO VERSION AS OF 5

-- Restore to timestamp
RESTORE TABLE my_table TO TIMESTAMP AS OF '2024-01-15 10:00:00'
Warning: RESTORE creates a new version; it does not delete subsequent versions.
3.3 Clone Table
Create a copy of a table at a specific version:
Shallow Clone
-- References same data files (fast, low storage)
CREATE TABLE clone_table SHALLOW CLONE source_table VERSION AS OF 5
Deep Clone
-- Copies all data files (independent copy)
CREATE TABLE clone_table DEEP CLONE source_table VERSION AS OF 5
3.4 Retention Configuration
Control how long history is retained:
ALTER TABLE my_table SET TBLPROPERTIES (
 'delta.logRetentionDuration' = 'interval 30 days',
 'delta.deletedFileRetentionDuration' = 'interval 7 days'
)
	Property
	Default
	Description

	logRetentionDuration
	30 days
	How long to keep history

	deletedFileRetentionDuration
	7 days
	Minimum VACUUM threshold

4. Table Maintenance
Regular maintenance operations keep Delta tables performant and storage-efficient.
4.1 OPTIMIZE
Compacts small files into larger files for efficient reads:
-- Basic optimize
OPTIMIZE my_table

-- Optimize specific partition
OPTIMIZE my_table WHERE report_date = '2024-01-15'

-- PySpark
from delta.tables import DeltaTable
dt = DeltaTable.forPath(spark, path)
dt.optimize().executeCompaction()
When to OPTIMIZE
1. After large batch loads
1. After many incremental updates/merges
1. When query performance degrades
1. Scheduled daily/weekly for active tables
1. Before creating snapshots or clones
4.2 Z-ORDER
Co-locates related data for columns used in filters:
-- Optimize with Z-ORDER clustering
OPTIMIZE my_table ZORDER BY (customer_id, order_date)

-- PySpark
dt.optimize().executeZOrderBy('customer_id', 'order_date')
Z-ORDER Guidelines
1. Choose 1-4 columns frequently in WHERE clauses
1. High-cardinality columns benefit most
1. Order columns by filter importance (most selective first)
1. Re-run after significant data changes
4.3 VACUUM
Removes old data files no longer referenced by any version:
-- Vacuum with default retention (7 days)
VACUUM my_table

-- Vacuum with specific retention
VACUUM my_table RETAIN 168 HOURS

-- Dry run (show files to be deleted)
VACUUM my_table DRY RUN
Warning: VACUUM permanently deletes data files. Time travel only works for versions with retained files.
VACUUM Safety
-- Cannot vacuum below retention without override
-- This is dangerous - use only when necessary
SET spark.databricks.delta.retentionDurationCheck.enabled = false
VACUUM my_table RETAIN 0 HOURS
4.4 ANALYZE
Collect statistics for query optimization:
-- Collect table statistics
ANALYZE TABLE my_table COMPUTE STATISTICS

-- Collect column statistics
ANALYZE TABLE my_table COMPUTE STATISTICS FOR COLUMNS col1, col2

5. Schema Evolution
Delta Lake supports schema changes without rewriting data, enabling agile development and changing requirements.
5.1 Adding Columns
-- SQL
ALTER TABLE my_table ADD COLUMN new_column STRING

-- PySpark with mergeSchema
df_new.write.format('delta')
 .option('mergeSchema', 'true')
 .mode('append')
 .save(path)
5.2 Renaming Columns
-- Enable column mapping first
ALTER TABLE my_table SET TBLPROPERTIES (
 'delta.columnMapping.mode' = 'name'
)

-- Then rename
ALTER TABLE my_table RENAME COLUMN old_name TO new_name
5.3 Dropping Columns
-- Requires column mapping mode
ALTER TABLE my_table DROP COLUMN column_to_remove
5.4 Changing Column Types
Limited type changes are supported:
1. Widening: INT to BIGINT, FLOAT to DOUBLE
1. NOT supported: Narrowing or incompatible types
1. Workaround: Add new column, migrate data, drop old
5.5 Schema Enforcement
Control schema strictness:
-- Strict mode (default) - reject non-matching schema
df.write.format('delta').mode('append').save(path)

-- Merge schema - add new columns automatically
df.write.format('delta')
 .option('mergeSchema', 'true')
 .mode('append')
 .save(path)

-- Overwrite schema entirely
df.write.format('delta')
 .option('overwriteSchema', 'true')
 .mode('overwrite')
 .save(path)

6. Table Properties
Configure Delta table behavior through table properties.
6.1 Common Properties
	Property
	Description

	delta.logRetentionDuration
	How long to keep transaction log history

	delta.deletedFileRetentionDuration
	Minimum time before VACUUM can delete files

	delta.autoOptimize.optimizeWrite
	Auto-coalesce small files on write

	delta.autoOptimize.autoCompact
	Auto-compact small files in background

	delta.columnMapping.mode
	Enable column rename/drop (name or id)

	delta.minReaderVersion
	Minimum reader protocol version

	delta.minWriterVersion
	Minimum writer protocol version

6.2 Setting Properties
-- Set properties on existing table
ALTER TABLE my_table SET TBLPROPERTIES (
 'delta.logRetentionDuration' = 'interval 30 days',
 'delta.autoOptimize.optimizeWrite' = 'true',
 'delta.autoOptimize.autoCompact' = 'true'
)

-- View current properties
SHOW TBLPROPERTIES my_table
6.3 Auto-Optimize
Enable automatic optimization during writes:
-- Enable for specific table
ALTER TABLE my_table SET TBLPROPERTIES (
 'delta.autoOptimize.optimizeWrite' = 'true',
 'delta.autoOptimize.autoCompact' = 'true'
)

-- Or enable at session level
SET spark.databricks.delta.optimizeWrite.enabled = true
SET spark.databricks.delta.autoCompact.enabled = true

7. Maintenance Schedule
Establish regular maintenance routines for production tables.
7.1 Recommended Schedule
	Operation
	Frequency
	Considerations

	OPTIMIZE
	Daily/Weekly
	After batch loads; schedule during low usage

	VACUUM
	Weekly
	After OPTIMIZE; consider time travel needs

	ANALYZE
	Weekly
	After major data changes; before complex queries

	Z-ORDER
	Weekly/Monthly
	When query patterns involve filtered columns

7.2 Maintenance Notebook Pattern
maintenance_notebook.py
from delta.tables import DeltaTable

tables = ['gld_claims_fact', 'gld_member_dim', 'gld_provider_dim']

for table_name in tables:
 print(f'Maintaining {table_name}...')

 # Optimize with Z-Order
 spark.sql(f'OPTIMIZE {table_name} ZORDER BY (primary_filter_col)')

 # Vacuum old files
 spark.sql(f'VACUUM {table_name} RETAIN 168 HOURS')

 # Collect statistics
 spark.sql(f'ANALYZE TABLE {table_name} COMPUTE STATISTICS')

 print(f'{table_name} maintenance complete')
7.3 Monitoring
1. Track table size growth over time
1. Monitor file count and average file size
1. Alert on small file proliferation (>1000 files per partition)
1. Track OPTIMIZE and VACUUM execution times
1. Log maintenance operations for audit

Appendix: Quick Reference
A.1 Command Summary
	Operation
	Command

	Create Table
	CREATE TABLE t USING DELTA

	Insert
	INSERT INTO t VALUES (...)

	Update
	UPDATE t SET col = val WHERE cond

	Delete
	DELETE FROM t WHERE cond

	Merge
	MERGE INTO t USING s ON ... WHEN ...

	Time Travel
	SELECT * FROM t VERSION AS OF n

	Restore
	RESTORE TABLE t TO VERSION AS OF n

	Optimize
	OPTIMIZE t [ZORDER BY (cols)]

	Vacuum
	VACUUM t [RETAIN n HOURS]

	History
	DESCRIBE HISTORY t

A.2 Document Information
	Document Title
	Delta Lake Operations Guide

	Version
	1.0

	Last Updated
	January 2026

Page of
